
DEVELOPMENT, TEST, AND EVALUATION OF AUTONOMOUS
UNMANNED AERIAL SYSTEMS IN A SIMULATED WIDE

AREA SEARCH SCENARIO: AN IMPLEMENTATION OF THE
AUTONOMOUS SYSTEMS REFERENCE ARCHITECTURE

THESIS

Katherine E. Cheney
2d Lt, USAF

David D. King
2d Lt, USAF

AFIT-ENV-MS-20-M-220

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENV-MS-20-M-220

DEVELOPMENT, TEST, AND EVALUATION OF AUTONOMOUS

UNMANNED AERIAL SYSTEMS IN A SIMULATED WIDE AREA SEARCH

SCENARIO: AN IMPLEMENTATION OF THE AUTONOMOUS SYSTEMS

REFERENCE ARCHITECTURE

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Katherine E. Cheney
2d Lt, USAF

David D. King
2d Lt, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-20-M-220

DEVELOPMENT, TEST, AND EVALUATION OF AUTONOMOUS

UNMANNED AERIAL SYSTEMS IN A SIMULATED WIDE AREA SEARCH

SCENARIO: AN IMPLEMENTATION OF THE AUTONOMOUS SYSTEMS

REFERENCE ARCHITECTURE

THESIS

Katherine E. Cheney
2d Lt, USAF

David D. King
2d Lt, USAF

Committee Membership:

David R. Jacques, Ph.D.
Chair

John M. Colombi, Ph.D.
Member

Trevor J. Bihl, Ph.D.
Member

Mr Jeremy P. Gray, MS.
Member

AFIT-ENV-MS-20-M-220

Abstract

The implementation and testing of autonomous and cooperative unmanned sys-

tems is challenging due to the inherent design complexity, infinite test spaces, and

lack of autonomy specific measures. These challenges are limiting the USAFs ability

to deploy and take advantage of tactical and strategic advantages offered by these

systems. This research instantiates an Autonomous System Reference Architecture

(ASRA) on a Wide Area Search (WAS) scenario as a test bed for rapid prototyping

and evaluation of autonomous and cooperative systems. This research aims to pro-

vide a framework to evaluate the systems ability to achieve mission and autonomy

objectives, develop reusable autonomous behaviors, and develop reusable cooperative

decision making algorithms. For this research and application to the WAS mission,

metrics of autonomy were derived from literature requirements for autonomous sys-

tems implementing reactive architectures and control: responsiveness, robustness,

and perception accuracy. Autonomous behaviors, to include more complex behaviors

combining simple (atomic) behaviors were developed, and a variety of cooperative

decision rules were defined. The subsequent evaluation implemented a face centered

cubic design of experiments over four scenarios including a single vehicle, and three

levels of cooperation between two vehicles. Following a rigorous test plan, the tests

were conducted in simulation implementing automated testing and expedited analy-

sis. The test results were used to create a response surface model to characterize the

system and conduct multiple response optimization to determine an optimal config-

uration that maximizes area searched, percent detected, and perception accuracy in

a given target density.

iv

Acknowledgements

We would like to express our sincerest appreciation to our committee members

for their guidance through this process. Dr. Jacques and Dr. Colombi, we thank you

for your expertise and constant encouragement you each provided. All that we have

accomplished together has only been made possible by your perceptive decision to

pair us on this project and we thank you for the experience. Mr. Jeremy Gray, your

previous work building ASRA laid the foundation for this thesis; we thank you for

your willingness to teach and help us through our many technical problems throughout

this process. We have learned so much from this experience and were able to create

something larger than any individual effort due to the committee’s commitment to

our success.

Katie Cheney and Dave King

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xiv

List of Abbreviations . xvi

I. Introduction . 1

1.1 General Issue . 1
1.2 Scope . 6
1.3 Research Objectives and Questions . 8
1.4 Assumptions and Limitations . 9
1.5 Preview . 10

II. Literature Review . 11

2.1 Overview . 11
2.2 Wide Area Search Scenario . 11
2.3 Cooperative Autonomous Control . 13
2.4 Autonomy Architecture . 15
2.5 Statistical Models: Linear Regression . 24
2.6 Test Planning . 34
2.7 Design of Experiments . 35

Randomization . 36
2.8 Testing Autonomy . 40
2.9 Summary . 42

III. Methodology . 43

3.1 Overview . 43
3.2 WAS Scenario Design . 43
3.3 Software Design . 46
3.4 Test Definition . 47
3.5 Iterative Development . 50
3.6 Automated Testing . 51
3.7 Metrics & Required Data . 54
3.8 Factor and Level Selection . 57
3.9 Optimization of multiple responses . 60
3.10 Summary . 62

vi

Page

IV. Analysis and Results . 64

4.1 Overview . 64
4.2 ASRA Architecture Design . 64
4.3 ASRA Software Implementation . 67
4.4 Simulator Comparison . 94
4.5 WAS Simulation Performance . 96
4.6 Design of Experiments Results . 102

Responsiveness . 103
One Vehicle Operation . 104
Two Vehicle Operation and Cooperation Levels . 105
Robustness . 114
Application of DoE and RSM Results . 115

4.7 Test Method for Autonomous Systems . 116
4.8 Summary . 117

V. Conclusion . 119

5.1 Overview . 119
5.2 Research Findings . 119
5.3 Lessons Learned . 123
5.4 Future Work . 125
5.5 Final Thoughts . 128

Appendix A. LCM Message Descriptions . 130

Appendix B. Sample Behavior Code . 131

Appendix C. Controller Main Function Code . 136

Appendix D. Sequencer Main Functions Code . 138

Appendix E. Deliberator Main Function Code . 141

Appendix F. Perceptor Sense Function Code . 144

Appendix G. Coordinator Main Function Code . 147

Appendix H. Face Centered Central Composite Design Matrix 149

Appendix I. Multiple Comparison Test Results: One Vehicle
Operation . 152

Appendix J. Multiple Comparison Test Results: Two Vehicle
Operation . 177

vii

Page

Appendix K. Response Surface JMP Outputs: One Vehicle
Operation . 256

Appendix L. Response Surface JMP Outputs: Two Vehicle
Operation . 267

Appendix M. Responsiveness: One Vehicle Operation . 281

Appendix N. Responsiveness: Two Vehicle Operation . 283

Appendix O. Response Surface Optimization Code . 285

Appendix P. JMP Use Guide . 294

Appendix Q. Test Plan . 300

Appendix R. Multi-Domain Glossary . 317

Bibliography . 322

viii

List of Figures

Figure Page

1 Class diagram of the Uni�ed Behavior Framework
showing composite and leaf types of behaviors and a
composite behavior composed of an arbiter and behaviors 19

2 The sequence diagram of the Dynamic Sequencer shows
task plan generation from objective plan to arbitrated
behavior hierarchy. 21

3 The agent interfaces with the environment through
action outputs, a communication interface with other
agents for example, and environmental precepts. 22

4 Model of agent architecture with the Hardware Interface
Layer handling interface between Hardware and
Autonomy Layers. 24

5 Model of agent core consisting of the four layer HAMR
architecture and all communication routing through the
data marshalling service. 25

6 Graphical depiction of samples and population groups.
Statistical methods allow researchers to make
conclusions about a population group from the sample
group, saving time and money. 26

7 Checking studentized residuals for model adequacy: a).
shows a horizontal band of studentized residuals,
acceptable b). shows funneling, problematic c). double
bow, problematic d). non-linear, problematic.
Acceptable studentized residuals implies assumption of
independently distributed errors is met. Problematic
studentized residuals implies assumption on error is not
met.Valid assumptions are needed to make valid
inferences from statistical models . 32

8 Graphical depiction if a process. An important initial
step in experimentation is identifying inputs, outputs,
controllable and uncontrollable factors. Based upon
resources and time, the number of �nal factors, inputs,
and outputs to be tested will be selected. 35

9 Factorial design cube . 39

ix

Figure Page

10 Factorial centered cubic design cube . 39

11 Component breakdown of the system . 48

12 Graphical depiction collaboration between test and
software developer . 51

13 Graphical depiction of automated testing code . 52

14 Graphical depiction of experimental design to test an
instance of the framework . 61

15 Graphical depiction of optimization method . 63

16 Functional decomposition of WAS agent system from
Mission level, to task, and to function. 65

17 Behavior decomposition of WAS agent system from
Mission level, to objective, and to behavior. 66

18 Additional autonomy components provide required
system functionality. Perceptors provide sensor
information, hardware performs hardware tasks, and
logic in the deliberator and coordinator provide
functionality not captured in behaviors. 66

19 The four layer architecture required 12 LCM message
types were used to communicate between its 5 discrete
software modules in each agent as well as between agent
coordinators. 67

20 Additional composite behaviors were not used in the
simulation but were implemented to test the process of
implementing composite. 72

21 The SearchAvoid composite behavior causes the agent
to
y the search pattern while avoiding a speci�ed
location, shown here as the green dot. 73

22 The state diagram for single agent has a mostly linear

ow except for the return to launch condition triggered
by low fuel at any time. 78

x

Figure Page

23 The state diagram for a cooperative agent has more
forks becausesearchcan be exited early to con�rm a
target and must be returned to if area still needs searched. 79

24 The closer an agent is to a target, the more valuable it
is to go con�rm it. 84

25 The more fuel an agent has, the more valuable it is to
go con�rm instead of continuing to search. If an agent
has low fuel, it is better to continue searching to not
risk running out of fuel on the way to or from the target. 85

26 The more targets an agent found, the more valuable it
is for that agent to stop searching and con�rm a given
target. 85

27 An agent who has �nished search values con�rming any
target more than an agent still searching. 86

28 An agent who is loitering values con�rming any target
more than an agent not loitering. This helps distribute
targets between loitering agents so that no agent
remains loitering while the other con�rms all remaining
targets. 87

29 Agents who have �nishedsearchshould con�rm before
an agent still in search, so the value to stopsearchand
go con�rm a target should decrease as more agents
�nish search. The agents who have �nishedsearchmake
up for this utility loss in the Search Complete parameter. 87

30 A single agent mission in 2D showing the search and
con�rm patterns. 97

31 A single agent mission in 3D showing the search
altitude above the con�rm altitude and the targets below. 97

32 A 2D plot of the basic cooperation case where the
search area was divided between agents and agents
searched and con�rmed their sections individually. Any
uncon�rmed targets were due to miss-classi�cations of
the imperfect sensor. 98

xi

Figure Page

33 A 2D plot of the extreme cooperation case where agents
immediately con�rmed targets found by the other
agent. If one agent �nishes searching, it loiters in the
center waiting to con�rm any new targets the
remaining, searching agent may �nd. Targets may not
be completely
own over as the sensor �eld of view
senses the target some distance away. 99

34 A truncated 2d plot of a three agent moderated
cooperation case showing unintended behavior from the
cooperative utility function that overly values target
proximity with a low threshold, allowing agents to
individually and immediately con�rm a target they just
found in search. Note that the marker spacing is based
on the plot refresh rate and not the simulator step size. 100

35 A 2d plot of two agents with a cooperative utility
function tuned to discourage con�rming during search.
In this case, agents waited until search was completed
to distribute and con�rm targets in a somewhat e�cient
manner. 101

36 A 2d plot of two agents in the moderated cooperation
case with a cooperative utility function tuned to
balance immediate con�rmations and a tendency to
keep searching. 102

37 Response surface for perception accuracy as a function
of sensor parameters at a high level of cooperation. 106

38 Response surface and contour plots of mission time for
each level of cooperation by number of true and false
targets. 108

39 JMP output for percent di�erence in mission time and
percent area covered . 115

40 Maximum responsiveness model for single vehicle
operation . 281

41 Distribution and descriptive statistics for maximum
responsiveness for one vehicle operation . 282

42 Maximum responsiveness model for two vehicle operation 283

xii

Figure Page

43 Distribution and descriptive statistics for maximum
responsiveness for two vehicle operation . 284

xiii

List of Tables

Table Page

1 Binary confusion matrix describing sensor performance 13

2 Description of the Activation Path which acts as a
standard representation of behaviors to de�ne the
interface between sequencer and controller layers. 20

3 Factorial design: two factors, two levels . 39

4 Face centered cubic design . 39

5 Test objectives map to system components and problem
statements . 49

6 Step size test results . 54

7 Factors and Levels Pre-screening . 58

8 Re�ned Factors and Levels . 58

9 FOV and altitude combinations . 59

10 Final Factors and Levels . 59

11 Behaviors used in this simulation and their required
sensor inputs. 71

12 The controller required two LCM messages for two way
communication with the sequencer, three messages with
position information for the behaviors, and the particle
simulator sent the vehicle position and fuel status. 75

13 The sequencer required four LCM messages for two way
communication with the deliberator and controller. 76

14 The deliberator required nine LCM messages for
communication. Additional recipients of messages not
sent from the deliberator are excluded. 80

15 The perceptor required four LCM messages for
communication with the deliberator, coordinator, and
simulator. 90

16 Target attributes. 90

xiv

Table Page

17 The coordinator required �ve LCM messages for
communication with the other layers as well as an
additional message for communication with any
additional agent. 92

18 Global agent information message attributes. 93

19 Variables used in the model given in Appendix K 105

20 Variables used in the model given in Appendix L 105

21 Constant conditions used to mission time in Figure 38 109

22 De�nitions of target sparse, moderate density, and
target rich environments . 109

23 Range of values tested in response surface for
desirability calculations . 109

24 desirability (di) for each response variable . 110

25 Weights used in the Desirability function . 111

26 Con�gurations that maximize desirability using
information from Table 25 and 24 . 111

27 Predicted responses of optimal con�guration using
desirability criterion and response surfaces . 111

28 Optimal con�guration con�rmation simulation runs and
percent di�erence to predicted responses . 113

29 12 LCM messages were required to provide the
necessary communication between layers. 130

30 PyDOE output for experimental design of �nal factors
and levels selected, given in Table 10 . 150

31 PyDOE output for experimental design of �nal factors
and levels selected, given in Table 10, continued. 151

xv

List of Abbreviations

Abbreviation Page

DoD Department of Defense . 1

SUAS Small Unmanned Aerial System . 1

OSD O�ce of the Secretary of Defense . 3

STAT COE Scienti�c Test and Analysis Techniques in Test &
Evaluation Center of Excellence . 3

ASRA Autonomous Systems Reference Architecture 6

ANT Autonomy and Navigation Technology Center 6

AFIT Air Force Institute of Technology . 6

WAS wide area search . 6

HAMR Hybrid Architecture for Multiple Robots . 17

UBF Uni�ed Behavior Framework . 18

DBHG Dynamic Behavior Hierarchy Generation . 20

ASRA Autonomous System Reference Architecture 21

MBSE model based systems engineering . 22

LCM Lightweight Communication and Marshaling 23

SITL Software in the Loop . 23

ANOVA analysis of variance . 28

RSM response surface methodology . 33

DoE design of experiments . 35

GSD Ground Sample Distance . 43

RTL return to launch . 44

OP objective plan . 46

SITL Software in the Loop . 47

xvi

Abbreviation Page

FOV �eld of view . 58

FCCD face center central composite design . 59

xvii

DEVELOPMENT, TEST, AND EVALUATION OF AUTONOMOUS

UNMANNED AERIAL SYSTEMS IN A SIMULATED WIDE AREA SEARCH

SCENARIO: AN IMPLEMENTATION OF THE AUTONOMOUS SYSTEMS

REFERENCE ARCHITECTURE

I. Introduction

1.1 General Issue

The value of autonomous systems stems from the ability to extend and comple-

ment human ability. Autonomous systems can help limit human exposure to life

threatening environments as well as reduce the cognitive load on operators. These

systems have been implemented in aerial, ground, maritime, and space systems and

have proven valuable in Department of Defense (DoD) operations, saving lives and

extending human capabilities (Defense Science Board 2012, Zacharias 2019).

A major technology that has spread rapidly in both the consumer and defense

industries is small unmanned aircraft with basic autonomous capabilities. Small Un-

manned Aerial System (SUAS) have been implemented in areas such as surveillance,

agriculture, photography, and consumer hobbies. These systems often have basic

automated features such as failsafe modes, waypoint following, auto land and take-

o�, and a ground control station interface. With development, these features can

be expanded to more advanced functions such as target detection, identi�cation,

and tracking, decision making, data collection and analysis, and vehicle cooperation.

SUAS have the capability to perform many military missions including reconnais-

sance, search and rescue, damage assessment, surveillance, command and control,

1

and assisting manned aircraft missions. Furthermore, capabilities can be combined

through a network of SUAS. Distributing capabilities allows for a more robust and

resilient military solution because compromising one UAS does not eliminate the to-

tal capability. Additionally, due to the smaller size and lower cost, SUAS are more

attritable than traditional aircraft. This, in addition to the lack of a human pilot on-

board, means SUAS can be sent to high risk areas and decrease the inherent danger

of many military operations. These bene�ts and uses of SUAS present great potential

to combine UAS and autonomy.

There is a great potential in extending SUAS autonomy. SUAS with higher levels

of autonomy require a much lower level of operator input, allowing an expansion of

human capability and multitasking levels. By combining these technologies, a host of

new applications become available. However, the merging of these technologies brings

a host of new concerns regarding the uncertainties of autonomous behavior.

A common concern with the growing complexity of autonomous systems is the

lack of trust these systems naturally invoke in humans. Zacharias (2019) gives two

major reasons for this lack of trust. Fist, humans trust when they know they have

a common understanding how the autonomy works and how to interface with the

system. This is di�cult to establish due to the fundamental di�erence of operation

between autonomous systems and humans. The second factor is the degree to which

the reasoning and actions of those systems are obvious and predictable to the human.

This predictability becomes more di�cult as the autonomy grows in complexity, due

to the increased probability of unintended or unknown behaviors emerging. This

further complicates the explanation of the autonomy's behavior, a�ecting the level

of trust it harbors from humans. The challenge of developing trust between users

and autonomous systems can be addressed through a testing approach tailored to

autonomous systems (Zacharias, 2019). Autonomous applications implemented re-

2

sponsibly and appropriately can address many of these unknowns, but these concerns

should not halt autonomy development as doing so would establish a military capa-

bility de�ciency compared to our adversaries.

Despite these concerns, autonomous systems have been �elded for military use to

gain a strategic advantage over adversaries (Defense Science Board, 2012). Following

�elding, multiple publications from DoD leadership have been released (AFRL, 2014),

(Defense Science Board, 2012),(Ahner and Parson, 2016), identifying steps forward

in the development of autonomous technology. One recent Air Force report (AFRL,

2014) discusses the unique challenges of testing autonomy. Since autonomous systems

react to environmental stimuli, there are near in�nite decision spaces. These systems

are implemented in an unpredictable world with system faults and failures, human

error, weather e�ects with humans that have varying intentions, especially in war

zones. As a result, there are an in�nite number of environments a system can be

subjected to.

Testing all possible states and all ranges of inputs to the system is infeasible,

making autonomous systems a challenge (AFRL, 2014). As a result of this challenge,

the Defense Science Board task force report (2012) calls for test \techniques that focus

on the unique challenges of autonomy." Areas of interest include robust simulation to

capture test environments and methods to con�rm autonomous systems perform as

intended (Defense Science Board, 2012). In response, many studies and reports have

been conducted that identi�ed gaps and challenges in testing autonomous systems.

In 2015, the O�ce of the Secretary of Defense (OSD) Scienti�c Test and Analysis

Techniques in Test & Evaluation Center of Excellence (STAT COE) hosted a study

on testing of autonomous systems and released a report with research areas for the

DoD (Ahner and Parson, 2016). The challenge areas identi�ed include:

� Requirements and measures

3

� Test infrastructure and personnel

� Design for test

� Test adequacy and integration

� Testing continuum

� Safety and cyber security for autonomous systems

� Testing of human system teaming

� Post acceptance testing

Overcoming these challenge areas is crucial to the future development of au-

tonomous systems. The2018 National Defense Strategyidenti�es advanced au-

tonomous systems as one of their key investments: \The Department will invest

broadly in military application of autonomy, arti�cial intelligence, machine learning,

including rapid application of commercial breakthroughs, to gain competitive mili-

tary advantages" (Mattis, 2018). However, \extensive veri�cation, validation, test,

and evaluation are required before �elding autonomous weapon systems" (David and

Nielsen, 2016). As a result, research e�orts to develop requirements and measures

for autonomous systems is a �rst step to gaining a competitive military advantage

through autonomy.

The DoD is not the only stakeholders in testing autonomous systems. Commercial

applications of autonomous systems also require rigorous testing and are facing chal-

lenges in this area. One example is the production of driver assist technologies and

driverless cars. The RAND Cooperation released a report analyzing how many driv-

ing miles it would require to demonstrate autonomous vehicle reliability, highlighting

the testing challenge (Karla and Paddock, 2016). The report states, \Autonomous ve-

hicles would have to be driven hundreds of millions of miles and sometimes hundreds

4

of billions of miles to demonstrate their reliability in terms of fatalities and injuries."

This statement points to the complex decision spaces autonomous systems are sub-

jected to which make testing autonomy a challenge. Testing these spaces fully would

take tens and sometimes hundreds of years to accomplish. As a result, \developers

of this technology and third-party testers will need to develop innovative methods

of demonstrating safety and reliability" in order to test adequately and a�ordably

(Karla and Paddock, 2016).

In addition to test, directives about the development of autonomous systems have

been released. Autonomous systems share common behaviors regardless of the un-

derlying technical application. Zacharias (2019) outlines some common behaviors

for all autonomous systems. As a result of these common behaviors, architectural

approaches can be implemented to combine e�orts across domains. In his recom-

mendations, he mentions the need for one or more common autonomous system

architectures that combine frameworks used across autonomy communities. These

architectures should be fully functional, allowing users to extend the capabilities for

one application and reuse them for later projects. Zacharias also discusses a use-

ful development process for autonomous systems. These processes should support

\innovation, rapid prototyping, and iterative requirement development to support

rapid [Autonomous System] development and �elding." However, the software bur-

den of autonomy presents a challenge to rapidly prototype secure autonomous systems

(Zacharias, 2019). To account for this, the commonality of behaviors across domains

of autonomy can be leveraged to decrease the amount of development time required.

To achieve the bene�ts and overcome the challenges above, the streamlining of

the autonomous system development process must be achieved. Evolutionary de-

velopment and test of autonomous systems can be accelerated through a modular

development framework. This reusable approach can minimize rework between ap-

5

plications through the sharing of software components. This research evaluates a

framework for this development and includes an exploration of relevant autonomy

testing methods and metrics.

1.2 Scope

This research was primarily an implementation of the Autonomous Systems Ref-

erence Architecture (ASRA) developed by the Autonomy and Navigation Technology

Center (ANT) Center at the Air Force Institute of Technology (AFIT). The reference

architecture o�ers a
exible platform that enables autonomy researchers to rapidly

step through evolutionary autonomy development. A large e�ort of this research fo-

cused on implementing the framework and building up new software components to

add to the module library. The build up of the software component library in the

framework allows for module reuse which is crucial to rapid evolutionary development.

ASRA was studied by implementing a wide area search (WAS) problem similar

to what is presented in Decker and Jacques (2007). This WAS mission served as the

test bed to evaluate the process of using ASRA for new research problems. The WAS

model is based on a distribution of stationary real and false targets utilizing a proba-

bility draw to simulate sensor behavior. A confusion matrix between encountered and

detected targets determines Type I and Type II sensor error which can be �ne tuned

to accurately simulate real world sensor performance (Decker and Jacques, 2007).

Multiple agents were implemented in order to present signi�cant autonomy com-

plexity and a relevant WAS scenario. This research explores variations in the level

of cooperation among small multi-rotor UAS to study their e�ect on mission perfor-

mance. A major driver of cooperative behavior are rules based on decision algorithms

similar to those studied in Gillen (2003). These rules take into account various agent

6

and environmental factors to arrive at a decision governing the agent's cooperative

behavior.

At this point, it is important to de�ne autonomy and distinguish the di�erence

with automation. Bihl et al. (2018) describes automation as a system that \functions

with little or no human operator involvement; however, the system performance is

limited to the speci�c actions it has been designed to do." In contrast, an autonomous

system \has a set of intelligence-based capabilities that allow it to respond to situa-

tions that were not preprogrammed or anticipated in the design...[and] has a degree

of self-directed behavior" (Bihl et al., 2018). However, to the layman, a system with

automation is often associated with automated manufacturing instead of systems that

have the ability to cooperate and weigh possible actions. Under the de�nitions listed

above, both are considered automation. This reality indicates some sort of spectrum

within automation that eventually approaches autonomy at some contested point.

In light of the automation spectrum and the multi-disciplinary approach of systems

engineering, a broader de�nition is given that aligns with the common connotation

of autonomy.

In this research, autonomy is de�ned as:the ability to make decisions using sen-

sory information without human interaction, adapted from MahmoudZadeh et al.

(2019).

This de�nition was chosen to enable rapid prototyping of reusable behaviors and

to gain access to information required for testing. The work in this research is ex-

tendable to arti�cial intelligence and machine learning. ASRA can be extended to

include machine learning algorithms and test methods can be further developed to

accommodate these systems. However, implementing automation according to Bihl

7

et al. (2018) allows observability and explainability of the system while developing

test methods and metrics for autonomous systems. This provides a starting point for

metrics and methods that can be expanded to the autonomous systems described in

(Bihl et al., 2018).

In order to test the performance of the autonomy, the reference architecture re-

quired new development of software modules tailored to evaluating autonomy. In this

research, autonomy is de�ned as the ability of an agent to make decisions according

to prede�ned decision rules. To make these decisions, an agent perceives the world

around it and uses this information to apply the rules. This research utilized simula-

tion to vary sensor, agent, and environmental parameters over which to evaluate the

ability of the agent to correctly implement decision rules. Simulation allows data to

be collected over many conditions in a short amount of time and can track truth and

agent perception and decisions to produce measures of autonomy and e�ectiveness in

simulation. Test methods of autonomy is a new module in ASRA, allowing reuse and

modularity.

1.3 Research Objectives and Questions

The research objectives are:

1. Further de�ne and prototype the Autonomous Systems Reference Architecture

(ASRA).

2. Develop test methods and metrics for autonomous systems.

The research questions are:

1. What additions to ASRA need to be made to implement a new WAS applica-

tion?

8

2. How does ASRA enable reuse of the similarities that exist in autonomous and

cooperative systems?

3. How does ASRA support the variations of autonomous and cooperative sys-

tems?

4. What are e�ective and e�cient test methods for autonomy?

5. How should the test space be limited given a speci�c mission space?

6. What are valid and useful measures of autonomous systems?

1.4 Assumptions and Limitations

� A multi-rotor platform will be utilized for the Wide Area Search mission because

of its simple
ight dynamics and control.

� The WAS scenario will be multiple vehicle with multiple targets with no prior

knowledge of target location.

� Inter agent communication is nominal.

� Targets are static and uniformly distributed throughout the search area

� Sensor performance can be accurately modeled with a confusion matrix.

� Vehicle operation will be nominal with the exception of a return to launch state

driven by a low fuel condition.

� Errors are independently and identically distributed.

� Canonical analysis is not required.

� Optimization of response is not interested in tuning of weights or desirabilities.

9

� A sensor failure causing a return to launch command can be modeled with a

low fuel command.

� Responsiveness to objective plan is approximately that to external stimuli.

� No decision is made on whether Type I error or Type II error is more preferable,

each are weighed equally.

� The sparsity of e�ects principle can be applied.

1.5 Preview

Chapter I presented the general issue, listed the research goals, provided the scope

and general approach of this research, and listed assumptions made. Chapter II

provides a background on the WAS problem, details the use of cooperative control,

discusses autonomy architectures, and presents existing research on veri�cation and

validation of autonomous systems. Chapter III introduces the speci�c WAS scenario

and ASRA implemented in this research as well as an overview of the test design

and chosen metrics. The implementation of a WAS agent in ASRA and the selected

testing measures are given in Chapter IV. Finally, Chapter V gives conclusions and

insights on the reference architecture development and test results. This research

extends ASRA to provide an development environment to expedite future autonomous

system research as well as test measures and metrics. Statistical models are created

to predict system performance, including autonomous performance. These responses

can be optimized for a given mission environment, demonstrating statistical models

as tools for requirements prioritization, optimal vehicle con�guration, and simulated

model extrapolation.

10

II. Literature Review

2.1 Overview

The literature review details information needed to understand this research. In-

formation on the wide area search scenario, cooperative autonomous control, auton-

omy architectures and the uni�ed behavior framework are given. Previous work on

the autonomous system reference architecture expanded in this research is shown

and discussed. The knowledge needed to understand the test methods, models, and

optimization are detailed, including mathematics and assumptions. The literature

base for metrics developed in this research are over viewed. This chapter should be

referenced to guide understanding of the prerequisite topics used in this presentation.

2.2 Wide Area Search Scenario

One of the many applications of UAS is wide area search and detection. With

applications in search and rescue, target surveillance, and attack, these scenarios

require e�cient search of a large area to detect and identify targets in an unknown

environment. The mundane task of
ying search patterns is well suited to the abilities

of autonomous aircraft making their application in this area of research importance.

Additionally, the potential for increased e�ciency with multiple vehicles makes this

scenario an ideal test bed for autonomous operation and cooperative control devel-

opment.

The scenario presented in Jacques and Pachter (2004) equips modeled agents with

an ordinance and studies the trade-o�s and outcomes of agent decisions to attack or

continue searching for other agents. When the agents themselves are the munitions,

the decision to attack terminates the agent and has a greater e�ect on mission success

than a scenario of only search and con�rm activities.

11

Two metrics used to evaluate wide area search and attack scenarios are area

coverage rate and false target attack rate. For WAS missions, excluding munitions,

false target attack rate can be roughly equated to false target detection rate which

is driven by the quality of the agent's sensor. Gillen (2003) found that false target

attack rate has a major impact on mission performance. To improve this false target

attack rate, additional target con�rmations can be performed, either by the detecting

agent or another agent, at the expense of area coverage rate.

The wide area search scenario has multiple characteristics that can be adjusted

to alter the simulation. The search area can be sized to match the vehicle's range or

fuel resources; and in conjunction with the number of targets and distribution type,

de�ne target density. Targets can be stationary or moving with the latter enabling the

targets to evade the searching agents. There are many di�erent search patterns agents

can follow such as spiral, random walk, and lawnmower patterns. Additionally, multi-

agent search pattern directions, either approaching or separating from other agents,

can a�ect the probability of detecting targets.

The WAS problem assumes on-board sensors to detect and classify the targets.

If the sensor's performance characteristics are not the focus of the research, a basic

sensor can be modeled with a confusion matrix as described in Jacques and Pachter

(2004) or the tree approach of Ross et al. (2019) where sensor performance can be

modeled for multiple target types sensed under various conditions such as lighting

or orientation. A binary confusion matrix shown in Table 1 characterizes a single

sensor and target type combination but the matrix can be expanded for multiple

sensor and target types. For the binary confusion matrix case, the designer de�nes

the sensor's probability of true target recognition, PTR , and probability of false target

recognition, PFTR . Values of 1 on the diagonal describe a perfect sensor and one minus

12

these values is the probability of incorrect target recognition of either a true or false

target. Nominal starting values are around PTR = .9 and PFTR = .8.

2.3 Cooperative Autonomous Control

The WAS problem's main limitation of resources can be addressed through the

application of multiple agents to the same mission area. There are varying levels of

this teamwork that can be implemented as well as many ways to distribute control

throughout the system of agents. Martinez (2008) describes multiple types of coop-

erative controllers with di�erent levels of distributed control. A centralized control

architecture receives all agent information and assigns tasks and roles to each agent.

Decentralized control exists when agents share goals and information allowing agents

to individually make decisions that support global utility. Decentralized control al-

lows for
exible inter-agent operation, allowing the system to adapt to new agents and

to degrade gracefully if any agents fall o�ine. This requires an arbitration scheme be-

tween agents as no single agent makes group level decisions, but arbitration requires

increased information
ow and therefore more agent communication bandwidth. De-

centralized control is also more robust to communication loss because agents can

continue to perform useful tasks without global information, whereas losing commu-

nication under centralized control can leave agents in an unproductive state, waiting

for new tasks that never arrive.

Table 1. Binary confusion matrix describing sensor performance

Encountered
True False

Detected
True PTR 1-PFTR

False 1-PTR PFTR

13

The e�ect of di�erent levels of cooperation have been reported in Dunkel (2002)

and Park (2002). While both of these works analyzed cooperation in a search and

attack scenario where the agents themselves were munitions, some overall conclusions

may still apply to other WAS scenarios such as search and con�rm. Dunkel deter-

mined that cooperation does not always yield improved results and it must be applied

strategically to improve mission success. He notes that cooperative attack can easily

degrade system performance because a falsely classi�ed target can waste resources as

more agents are expended to attack a false target. Cooperative classi�cation showed

more potential because the requirement to con�rm with multiple agents decreased

the chances of falsely classifying the target. The bene�t of cooperation was greatest

when sensor quality was poor as multiple agents were still able to correctly classify

targets. When the result of mis-classifying a target is losing an agent and striking a

non target, cooperation's e�ect on decreasing false target classi�cations becomes very

valuable. For a search and con�rm mission, cooperative classi�cation can minimize

wasted resources by minimizing the chances of monitoring a mis-classi�ed target.

Park (2002) determined that the number of deployed agents must be matched to the

density of the target distribution. A higher target density may be best suited for

more agents but only to a point, as the e�ciency of agents drops o� when deploying

too many agents to a relatively small area.

In Gillen (2003), a cooperative decision algorithm is presented that determines

the criteria an agent uses to determine if it should engage a target. This formula

was designed to encourage participation in cooperative engagement when engaging

the target appeared to be an e�cient use of resources, such as when the agent is

low on fuel and less likely to �nd another target through continued search. These

normalized values were then weighted, summed together, and compared to a thresh-

old. The author found that this cooperation function did improve the probability of

14

target detection for low quality sensors under certain mission environment conditions

but tuning the cooperation function for a wide range of mission characteristics was

di�cult.

Dunkel (2002) chose three levels of cooperation to test cooperation performance

on, a case with no cooperation, an extreme cooperation case where any agent can

attack any target, and a third case of moderated cooperative classi�cation and at-

tack involving multiple, independent target classi�cations before attacking. A wide

variance in cooperation e�ectiveness was found among these three scenarios with

the moderated cooperative case bene�ting most by cooperation even with decreasing

sensor performance.

2.4 Autonomy Architecture

Layered Architectures.

Autonomous system architectures have progressed since the mid-eighties from

deliberate "sense, plan, act loops" to reactive architectures capable of faster execution,

but lacking in higher level planning (Murphy, 2000). The hierarchical control method

slowly steps through sensing the environment to build a world model, determining

a plan to execute a given goal, and then executing that goal in the act phase. The

method is e�ective at achieving its goal in near-static environments that change slowly

relative to the loop execution time such as space applications. If this loop is too slow,

the environment has changed after sensing is complete and the execution may no

longer be appropriate. Furthermore, the plan and act stages leave the agent unaware

of the current environment state.

To address these limitations, reactive architectures remove the time intensive plan

phase, allowing the sense and act phases to achieve fast adaptation to a changing

environment. Braitenberg (1986) studied how this can be achieved by simply linking

15

sensory inputs directly to motor outputs. This yields a highly speci�c application

for a given autonomous agent; to make the agent more task
exible, multiple sensors

can be linked to motors with each sensor's sense-act loop running in parallel. This

enables the agent to respond to speci�c inputs but still lacks overall planning or state

maintaining capabilities enabled by the deliberative approach.

While each of these architectures are individually limited, Gat (1998) proposes

combining them into a 3 layer architecture with a deliberator, sequencer, and con-

troller. The deliberator, a high level planner ultimately guides the controller, a low

level reactive mechanism. To link these layers, the sequencer translates abstract goals

into appropriate reactive controller operations to achieve the goal. Running these lay-

ers concurrently in separate threads or processes frees the deliberator to model and

plan at its own pace while the controller can step through the sense-act loop at a

faster rate that can react to a dynamic environment.

The deliberator layer is able to slowly read the world model to drive high level

planning such as path planning algorithms or mode changes. Additionally, the de-

liberator considers requests from the lower, sequencer layer which can notify when

a goal is completed or if the sequencer was unable to determine a set of behaviors

to accomplish a goal. The deliberator can then use this information in its planning

process and adapt. Because the execution speed of the deliberator does not e�ect low

level function, Gat (1998) suggests the deliberator's logic and algorithms should not

be constrained, and thus could range from simple state machines to more dynamic

models that learn from the environment.

The controller can be thought of as behaviors or a set of transfer functions that

each convert sensor inputs to motor outputs in a unique way. Gat (1998) points out

that these behaviors should "fail cognizantly" or recognize their failure and notify the

16

rest of the system. This allows for a fault aware system that can react to unintended

performance of the controller layer.

The sequencer is then tasked with executing the goal given by the deliberator by

selecting the appropriate controller behavior, or sequence of behaviors that achieves

the current goal. The sequencer monitors the controller layer to determine when goals

are achieved or if the deliberator's goal cannot be achieved with the agent's available

behaviors. Additionally, the sequencer supplies any parameters the behavior may

need for its operation such as a goal position in the case of a waypoint achieving

behavior.

While the three layer architecture enables a single agent to perform complex func-

tions in a dynamic environment, it does not provide for multi-robot interaction.

Hooper and Peterson (2009) suggest that adding a fourth layer above the deliber-

ator to act as a coordinator between agents enables high functioning multi-agent

integration. This Hybrid Architecture for Multiple Robots (HAMR) assigns the co-

ordinator the tasks of inter-agent communication and translation of important global

information down to the deliberator. The coordinator maintains the state of other

agents and their impact on the world model such as agents' positions, state history,

and current tasks, and communicates any important internal changes to the rest of

the agents. The coordinator can then operate on this data, determining the utility

of tasks, and pass that information on to the deliberator to aid in decision making

in light of the overall group of agents. To address the arbitration of tasks between

agents and ensure the agent with the highest utility performs the task, the author

suggests all agent deliberators determine their own utility for the task and send that

out to all other agent coordinators so that each agent can determine if they have the

highest utility to perform that task based on what they received from their coordi-

17

nator. Because the coordinator is unaware of all agents' capabilities, agents cannot

perform this arbitration individually.

Uni�ed Behavior Framework.

The controller layer's behaviors that form the transfer functions from sensors to

motors are often not simply a single behavior but are combinations of multiple low

level behaviors. Braitenberg (1986) suggests that complex behaviors observed in

natural beings are simply, or at least can be modeled by, the combination of many

low level behaviors. The di�culty of designing a highly capable controller layer is

the organization and combination of the many behaviors required to reach the goal

behavior. The Uni�ed Behavior Framework (UBF) presented in Woolley and Peterson

(2009) aims to address these issues by standardizing behaviors through encapsulation

and o�ering a
exible environment to adjust behavior structures during execution.

To allow for the
exible use and reuse of behaviors, their external interfaces should

be standardized. The UBF speci�es that the controller sends sensor information

in a standardized perceived state to the behavior which then returns its output as

an action output. The UBF also allows for multiple behavior control structures

to be implemented, such as subsumption which allows multiple behaviors to run

simultaneously, or motor schema which combines behavior output vectors into a single

output motor control. Traditionally the controller was limited to a single type of

behavior control architecture which may not be as appropriate for all goals the agent

may have.

The UBF enables behaviors to be combined into composite behaviors. This allows

for software reuse, utilizing a set of atomic leaf behaviors in any number of composite

behaviors that achieve a new goal that the individual behaviors could not achieve on

their own. Figure 1 shows the class diagram of UBF behaviors where composite and

18

leaf behaviors are two types of behaviors and composite behaviors are composed of

an arbiter and two or more behaviors of any type. This composite pattern builds a

behavior tree that allows leaf and composite behaviors to be handled in the same way

and for requests to
ow smoothly down the tree (Gamma et al., 1995). Composite

behaviors must include an arbiter to determine how to combine the action outputs

of its behaviors. Some types of arbiters are winner take all, vector sum, and priority

fusion. These take in each behavior's action vote and weight to determine a single

action output for the composite behavior.

Figure 1. Class diagram of the Uni�ed Behavior Framework showing composite and
leaf types of behaviors and a composite behavior composed of an arbiter and behaviors

19

In the same way that the UBF standardizes behavior interfaces, Peterson et al.

(2011) suggest a standard interface between the sequencer and controller that en-

ables the sequencer to automatically build up behavior libraries instead of requiring

predetermined sets of behaviors. Traditionally, the system designer must anticipate

all goals and build up complex behaviors that achieve them. The sequencer then

accesses this list to determine what to choose to achieve a given goal. Not only does

this require extensive forethought, any new additions to the behavior library must be

manually integrated into the behavior hierarchy. The Dynamic Behavior Hierarchy

Generation (DBHG) attempts to standardize this link through the use of activation

paths to describe leaf behaviors and enable the sequencer to build up behavior hier-

archies on its own. Table 2 shows the elements that make up the activation paths.

Table 2. Description of the Activation Path which acts as a standard representation of
behaviors to de�ne the interface between sequencer and controller layers.

Characteristic De�nition
Initial Conditions When true, generates an action vote
Post Conditions Environment e�ects the behavior intends to achieve
Required Data Sensor data required for behavior to function
Goals Deliberator goals the behavior intends to achieve
Control Settings Motor outputs the behavior generates
Behavior Vote User-de�ned weight of the behavior when in an acting state

The sequence diagram of the DBHG is shown in Figure 2. Using activation paths

as abstract representation of behaviors, the dynamic sequencer is able to translate the

sequenced and prioritized goals in objective plans sent from the deliberator, which

can contain any number of tasks to be completed, into an arbitrated hierarchy of

behaviors to accomplish those goals. When building up a behavior hierarchy, the

dynamic sequencer refers to a resource manager that monitors the agent's available

resources and returns only viable behaviors to consider using. The activation path's

post conditions tell the sequencer those conditions that indicate when the hierarchy

has completed its current task and when the next hierarchy should be sent.

20

Figure 2. The sequence diagram of the Dynamic Sequencer shows task plan generation
from objective plan to arbitrated behavior hierarchy.

Autonomous System Reference Architecture.

The Autonomous System Reference Architecture (ASRA), presented in Gray and

Jacques (2019), aims to provide an environment for autonomy researchers to quickly

spin up complex autonomous systems in a variety of domains using reusable and mod-

ular components. The reference architecture is modeled in SysML using the model

21

based systems engineering (MBSE) tool, Cameo System Modeler. This approach

provides multiple levels of abstractions and bring out details on the architecture,

interfaces, and concepts. MBSE and the Cameo tool help new users learn the ar-

chitecture and experienced researchers extend and document the architecture with

many di�erent views into the system. This model provides a platform to develop

implementation models which can aid in development and act as a digital twin to

evaluate system performance. An ASRA implementation has been developed using

the Python programming language.

The architecture thoroughly models the autonomous system in its environment

as well as its interactions with other agents. Figure 3 shows a high level abstraction

of an autonomous system where an agent interfaces with its environment through its

action outputs, communication with other agents, and environmental precepts. This

view shows how the reference architecture can model multiple agents in a system.

Figure 3. The agent interfaces with the environment through action outputs, a com-
munication interface with other agents for example, and environmental precepts.

Figure 4 models the three levels of an embodied agent. The autonomy layer con-

sists of an agent core where the autonomy architecture resides and a data marshalling

22

service which handles the information
ow to and from the agent core. The autonomy

layer interfaces with the hardware layer through the hardware interface layer. This

interface layer moderates their interactions with a standardized messaging structure

which allows for modularity of hardware and autonomy layers. The interface also

acts as a �lter, only relaying information meant for that particular agent core. This

interface layer is currently implemented using Lightweight Communication and Mar-

shaling (LCM) but other communications methods can be used as well. For the

hardware layer, ASRA has existing modules to interface with the Ardupilot Soft-

ware in the Loop (SITL) autopilot and a point mass simulator. By swapping out

the hardware layer, researchers can go from a simulated environment to a real world

environment. This is the case with SITL for example. Because SITL is a software

representation of the Ardupilot autopilot in a simulated world environment, transi-

tioning from simulation to
ight testing without any major changes to their software

agent. Additionally, this provides a digital twin capability, where the autonomy is

run on a real and simulated agent simultaneously, with the di�erence being what is

running in this hardware layer.

Figure 5 shows an instantiation of the agent core as the four layer HAMR ar-

chitecture. This is one of many possible agent core architectures such as a simple

reactive controller, or a reinforcement learning implementation. This view also shows

how perceptors interface with the layers, taking in sensor information, processing it

and providing state information to the rest of the agent core. These states update

the agent core state block which each layer references to update its own state block,

which contains only the states it needs to monitor.

23

Figure 4. Model of agent architecture with the Hardware Interface Layer handling
interface between Hardware and Autonomy Layers.

2.5 Statistical Models: Linear Regression

Statistical models are used to evaluate the autonomous WAS mission through ex-

periments of the ASRA. Experiments allow researchers to observe phenomena under

experimental conditions. Models are theoretical explanations of experimental ob-

servations expressed in one or more mathematical equations. These mathematical

equations can be used under model assumptions to predict a response given input

parameters. In test and evaluation, statistical methods are used to characterize the

capability of a system with a statistical model. Statistical methods are applied to

gather data in carefully designed experiments in order to asses the degree of uncer-

tainty in results. Statistical methods fall into three categories: descriptive statis-

tics, inferential statistics, and model building. Descriptive states allow analytic and

graphical descriptions of data sets. Inferential statistics are the methods by which

conclusions can be drawn about large groups from observing only a small subset of

24

Figure 5. Model of agent core consisting of the four layer HAMR architecture and all
communication routing through the data marshalling service.

25

the large group. In statistics, conclusions are made about a the population which

include all members of a group. Only a subset of the population, referred to as a

sample, is observed to draw conclusions. This concept is shown visually in Figure 6.

In experiments, a sample is taken to develop prediction equations from experimental

data. Prediction equations are statistical models which allow prediction of behavior

from a complex system with an associated probability of error (Milton, 2003).

Figure 6. Graphical depiction of samples and population groups. Statistical methods
allow researchers to make conclusions about a population group from the sample group,
saving time and money.

In basic algebra, the equationy = mx + b is used to express a linear relationship

where m is the slope andb is the y-intercept. In an experiment, a response can be

expressed as a linear equation with some sort of unique true error,E i . The equation

of the true relationship is given in Equation 1 where� 0 is the y-intercept and � 1 is

the slope of the line.

26

Yi = � 0 + � 1x1 + E i (1)

In simple linear regression, the true relationship in Equation 1 is modeled by

Equation 2 whereb0 is the estimate of� 0, the y-intercept and b1 is the estimate of

� 1, the slope of the line, and� is the estimate of true error. The response �y is the

mean response for inputx1.

�y = b0 + b1x1 + � (2)

The method of least squares is applied to �nd estimates of� 0 and � 1, solving for

b0 and b1 respectively. The least squares estimation method estimates the parameters

by minimizing the square distance of the estimated error,� . Using the method of

least squares, the estimates forb0 and b1 are given in Equation 3 and Equation 4. In

Equation 4, n is the total number of observations.

b1 =
n

P n
i =1 x i yi � (

P n
i =1 x i)(

P n
i =1 yi)

n
P n

i =1 x2
i � (

P n
i =1 x i)2

) (3)

b0 = �y � b1x1 (4)

In order to test hypotheses about results, the assumptions given in Montgomery

(2012) are applied:

1. The random variablesYi and E i are independently and normally distributed

2. Error has a mean of zero and constant but unknown variance,� 2

3. Linearity and homoscedasticity

4. No auto{correlation or multicollinearity

27

These assumptions are common to both regression and analysis of variance (ANOVA).

The satisfaction these assumptions allows one to assert� � 0, simplifying Equation 2

to Equation 5 where �y is the mean response. Equation 5 can be expressed in matrix

form, given in Equation 6. MatricesX and b are de�ned in Equation 7.

�y = b0 + b1x1 (5)

�y = Xb (6)

X = [1; x1] , b =

2

6
4

b0

b1

3

7
5 (7)

Regression analysis allows investigation and modeling of relationships between

variables. The simplest type of regression is simple linear regression. A simple linear

regression is an equation that predicts one response in terms of one input variable, as

shown in Equation 5. The response is linear and therefore resembles the simple line

equation where the intercept isb0 and the slope isb1. When one wishes to investigate

a response with multiple independent variables, multiple linear regression models can

be used in the same fashion. A multiple linear regression can be solved with a matrix

approach, Equation 8.

2

6
6
6
6
6
6
6
4

Y1

Y2

...

Yn

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

1 x11 x21 : : : xk1

1 x12 x22 : : : xk2

...

1 x1n x2n : : : xkn

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

� 0

� 1

...

� k

3

7
7
7
7
7
7
7
5

+

2

6
6
6
6
6
6
6
4

E1

E2

...

En

3

7
7
7
7
7
7
7
5

(8)

28

Equation 8 is the matrix representation of Equation 1 in multiple linear regression.

Applying ANOVA assumptions simpli�es the expression to Equation 9 in the form of

�y = Xb .

2

6
6
6
6
6
6
6
4

�y1

�y2

...

�yn

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

1 x11 x21 : : : xk1

1 x12 x22 : : : xk2

...

1 x1n x2n : : : xkn

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

b0

b1

...

bk

3

7
7
7
7
7
7
7
5

(9)

To �nd the least squares estimate for� , �̂ is calculated using Equation 10.

�̂ = b = (X 0X)� 1X 0y (10)

Matrix calculation of multiple linear regression is most easily done with comput-

ers. Examples of computer programs that can easily calculate regression coe�cients

include: MATLAB, Python, and R (Montgomery, 2012).

Once a statistical model is created, the researcher determines the statistical sig-

ni�cance of the model. To do this, total variability is separated into its components.

The total corrected sums of squares,SST , is obtained by Equation 11 where �y::: is

the average of all measurements for a given response variable in an experiment with

a treatments and n observations of theith treatment. The total number of response

observations, N, is equal toan. A treatment is de�ned as a unique setting of a single

factor.

SST =
aX

i =1

nX

j =1

(yij � y:::)2 (11)

i = 1; 2; : : : ; a treatments

29

j = 1; 2; : : : ; n observations of treatment

N = an total response observations

The total sums of squares can be broken down into components of error (SSE)

and treatment (SST r). Sums of squares error can be further broken down into com-

ponents of pure error (SSP E) and lack of �t (SSLOF). These breakdowns are given

by Equations 12 and Equation 13.

SST = SSE + SST r (12)

SSE = SSP E + SSLoF (13)

Replicates are required to separateSSE into its components. SSP E gives an

unbiased estimate of experimental error,� 2. Without replicates, SSP E � SSE is

assumed. TheSSE is calculated by Equation 14. TheSST r is determined by simple

subtraction, given in Equation 15 (Montgomery, 2017)..

SSE =
aX

i =1

nX

j =1

(yij � �yi:)2 (14)

SST r = SST � SSE (15)

Determining statistical signi�cance is achieved through hypothesis testing under

a given decision criterion, the probability one is willing to reject a null hypothesis.

To test signi�cance of regression the following hypotheses are tested in Equation 16

and Equation 17.

H0 : � 0 = � 1 = : : : = � n = 0 (16)

30

H1 : at least one� i 6= 0 (17)

The hypotheses are tested using the appropriate test statistic,F0. The test statis-

tic, F0 is calculated using Equation 18.

F0 =
SST r =(a � 1)
SSE =(N � a)

(18)

To assessF0, it is compared to the F�;a � 1;N � a where � is the decision criterion,

typically 0.05. The decision criterion, � , is also referred to as Type I error and

statistical level of signi�cance. Type I error is de�ned as the probability of rejecting a

null hypothesis (H0) when it is actually true (false positive). It's opposite,� is called

Type II error and is the probability of failing to reject the null alternative hypothesis

(H0) when it is actually false (false negative). One should rejectH0 and conclude the

regression is insigni�cant if:

F0 > F �;a � 1;N � a

F�;a � 1;N � a can be determined using a F-statistic table.

Once a signi�cant regression model is created, the analyst will need to deter-

mine model adequacy by checking the assumptions made in ANOVA. The response

variables should be roughly normal with a single peak and decaying tails. This can

be checked by creating a distribution of responses. Next, studentized residuals are

plotted against row. Desirable studentized residuals are ones that reside in a horizon-

tal band with no apparent correlations, shown in Figure 7a. If no pattern appears,

this indicates that the errors are independently distributed. Examples of acceptable

and problematic studentized residuals are shown in Figure 7. If variance of observa-

tions increases with observation, this is evidence of nonconstant variance, a violation

31

of ANOVA. Checking model adequacy is an important step in creating a statistical

model so that the conclusions drawn from the model are valid.

Statistical models with polynomials and interactions are also used with regression

and response surface methodology. The sample principles are applied in these cases.

Interactions and higher order terms are included if there is evidence of signi�cance

or need. An analyst would include interactions if there is a desire to investigate

the signi�cance of factor interactions. Higher order responses are used if there is

Figure 7. Checking studentized residuals for model adequacy: a). shows a horizontal
band of studentized residuals, acceptable b). shows funneling, problematic c). double
bow, problematic d). non-linear, problematic. Acceptable studentized residuals im-
plies assumption of independently distributed errors is met. Problematic studentized
residuals implies assumption on error is not met.Valid assumptions are needed to make
valid inferences from statistical models

32

knowledge of second order responses from system experts or numerically if higher

order model terms are indicated by a lack of �t test and curvature test. A lack of �t

test indicates there is a lack of �t in the model. This can indicate a need for including

interaction terms, second order e�ects, or some other missing e�ect. To show that

a second or higher order model is needed, a test for curvature can be conducted. If

the statistical test indicates curvature, a second or higher order model is necessary

(Montgomery, 2012). Statistical software such as JMP, SPSS, and Minitab can be

used to quickly calculate these statistical models and tests. Bihl (2017) gives a guide

on utilizing JMP for this purpose.

In response surface methodology (RSM), a statistical model based upon linear

regression above is used to create a response surface. Response surfaces are used to

characterize a system and optimize multiple responses. There are multiple methods

for optimizing multiple responses in a system. Desirability functions is one way to si-

multaneously optimize multiple responses. To do so, the analyst creates a desirability

function, di , for each response which varies over the range 0� di � 1. If the objective

is at the target, di = 1. If the response is outside of an acceptable region,di = 0. The

optimal con�guration is the one which maximizes overall desirability. Each objectives

is given a weightwi to account for objectives that are more important than others.

Weights wi sum to 1. In additive form, the desirability score form objectives is given

in Equation 19.

D =
mX

i =1

wi di (19)

The desirability function is applied to points on the response surface. The point

which gives maximum desirability indicates the optimal response based on the weights

given (Myers, 2016).

33

2.6 Test Planning

The purpose of test planning is to ensure that the time and money put into

testing yield useful and informative results. The steps in test planning help guide the

analyst in creating the right test for the right reasons. Each step in the test planning

process should be traceable to system requirements. The test should address the

problem statement and answer the test objectives. It is very possible that one step

in the process might inform earlier steps. In these cases, it is useful to interate again

through the process to create the most useful and e�ective test plan. This feedback

loop increases the amount of learning done before testing and helps to mitigate risk

of test on budget and schedule. Using the guidance from the STAT COE, a summary

of 10 steps have been compiled (Cortes, 2014):

1. Draft a problem statement that addresses scope and the type of problem to be

investigated by the test plan

2. Create a system decomposition, often a work breakdown structure (WBS)

3. Write clear, concise, testable, traceable, and measurable test objectives

4. Identify evaluation measures (response variables)

5. Identify required data for evaluation of responses

6. Identify sources of variation that could a�ect responses

7. Identify and understand all potential factors that could a�ect the responses

8. Select region of interest, factors to vary, and factor levels

9. Select experimental design based upon the above and how many runs can be

a�orded by the test infrastructure, timeline, and budget.

10. Trace above to problem statement and test requirements

34

2.7 Design of Experiments

An important step in experimentation is the experimental design chosen (test

planning step 9) using design of experiments (DoE). The results and conclusions

made from an experiment are largely dependant on the methods used to collect data.

Generally, experiments study processes or systems. Processes or systems consist of

inputs and outputs which are impacted by factors that can either be controllable

or uncontrollable and include a number of factors from design parameters to envi-

ronmental and operating conditions (Montgomery, 2017). Figure 8 shows a simple

graphic of this process.

Figure 8. Graphical depiction if a process. An important initial step in experimentation
is identifying inputs, outputs, controllable and uncontrollable factors. Based upon
resources and time, the number of �nal factors, inputs, and outputs to be tested will
be selected.

In experimental design, these factors are identi�ed as either potential design fac-

tors or nuisance factors (test planning step 6-7). A design factor is one that an

experimenter desires and has the ability to vary in an experiment. A nuisance factor

35

is one that has an e�ect on the process but is not of particular interest of the ex-

periment. Nuisance factors can be classi�ed as either controllable, uncontrollable, or

noise. A controllable nuisance factor is one the experimenter can manipulate while

an uncontrollable nuisance factor cannot. A noise nuisance factor is one that varies

naturally but can be controlled for purposes of an experiment. Experimental design

is the process of identifying these factors and utilizing randomization, replication,

blocking, and the factorial principle (Montgomery, 2017).

Randomization.

Randomization is important in experimental design because statistical methods

require observations to be independently distributed random variables. Randomiz-

ing the allocation of experimental material and order of runs properly allows this

assumption to be valid. Additionally, proper randomization of an experiments assists

in averaging the e�ects of extraneous factors present due to time such as learning or

wear (Montgomery, 2017).

Replication.

Replication or repeats of the same experimental conditions allows the experimenter

to obtain an estimate of experimental error. This has two purposes: to determine if

the observed di�erences in data are statistically di�erent and to more accurately esti-

mate the mean response. Increasing the number of replicates allows the experimenter

to make a more precise estimate of the true mean response rather than experimental

error. Replicates re
ect sources of variability both between runs and possibly within

runs (Montgomery, 2017).

36

Blocking.

Another experimental technique is blocking. Blocking allows the experimenter to

reduce or eliminate variability from nuisance factors. Generally, a block is a set of

homogeneous experimental conditions where each level (setting of a factor) of condi-

tions could potentially be a block. For example, an experiment may require multiple

batches of raw material for all required runs. However, there could be di�erences be-

tween batches due to supplier variability. For a given experiment, the batch number

may not be a factor of interest. Instead, this is a nuisance factor and each batch

would be a block in the experiment to take out the e�ect of supplier batch from

experimental error (Montgomery, 2017).

Factorial Principle.

Lastly, the factorial principle determines experimental testing of all or a fraction of

combinations and interactions of factors. In design of experiments (DoE), the setting

at which each factor is set is a level. IfL levels ofk factors are selected and a full

factorial is applied, the number of runs required isL k .

N Runs = L k

Observing responses at selected levels and their interactions allows the experi-

menter to characterize the bounds of a system in a systematic way. However, se-

lecting all factors at all levels may create a number of runs una�ordable with time

and/or money. Therefore, the sparsity of e�ects principle is applied. The sparsity of

e�ects principle says most systems are dominated by some main e�ects and low order

interactions. Typically, higher order interactions are negligible and a system can be

explained with a few factors and low order interactions. Classically, factorials are

37

selected withL = 2 and augmented with center points if testing for curvature (2nd

order model) is of interest (Montgomery, 2017).

Factor screening can be used to keep the levels of factors selected low. In factor

screening, many factors over two levels are used to determine the most in
uential

factors for a system over a relatively large region of interest (wide breadth of exper-

imental conditions). Designs have been created speci�cally for screening which give

inaccurate model coe�cients but allow many factors to be tested over fewer runs to

determine factors with the strongest e�ects. Factor screening takes place is step 8 of

the test planning process.

Once the number of factors are determined, a design is chosen (test planning step

9). There are many things to consider when selecting a design. When �nalizing the

design, the selection should be able to give the required information to satisfy the test

objectives from the test plan. Decisions in test design are trade o�s. Typically, by

gaining one thing, another is lost. For example, having replicates allows the analyst

to determine experimental error but require more runs. Additionally, adding center

points to the design allows testing of curvature and assessment of lack of �t to use

a quadratic model. However, adding center points decreases the variance optimally

of the model in exchange for a model that is closer to the true population response.

When making trade o� decisions the analyst should always reference the test problem

statement and objectives to make the best decision possible.

Full factorial designs include observations at all conditions and their interactions.

When full factorials are not permissible due to time or money, fractional factorial

designs can be implemented. Fractional designs lack most interactions of factors but

have a portion included. Fractional designs can be projected by running the other

portions of the fraction(s) to get closer, or eventually become a full factorial design.

38

Center points and replicates can be added as discussed above to give estimates of

pure error, lack of �t, and assessment of curvature.

Factorial designs with three factors each with two levels are often depicted as a

cube. Factors set at a high level are signi�ed by a +1 and factors set at a low level

are signi�ed with a -1. Figure 9 shows a cube depiction of all the design points given

in Table 3. A factorial design can be augmented with center points and interactions

with main e�ects (Montgomery, 2017). Figure 10 shows a graphical depiction of the

entire design given in Table 4.

Run Factor 1 Factor 2
1 -1 -1
2 1 1
3 -1 1
4 1 1

Table 3. Factorial design: two factors, two levels Figure 9. Factorial design cube

Run Factor 1 Factor 2
1 -1 -1
2 1 1
3 -1 1
4 1 1
5 0 0
6 0 0
7 -1 0
8 1 0
9 0 -1
10 0 1
11 0 0
12 0 0

Table 4. Face centered cubic design
Figure 10. Factorial centered cubic
design cube

39

2.8 Testing Autonomy

Testing autonomous systems is founded in the same principles as non-autonomous

systems. Test planning, design of experiments, and statistical models are imple-

mented. As shown in test planning, traceability to requirements is important and

referenced throughout the test process. In the STAT COE workshop report, Ahner

and Parson (2016) calls for requirements and measures that address the systems abil-

ity to complete critical tasks as well as autonomous decision making capabilities. In

test, the ability of the system to achieve its required tasks is the primary test metric

(OAS, 2010). There are a variety of metrics that have been used to describe a system

with autonomy: fuel usage to measure e�cient search (Berthold et al., 2019), percent

detected in underwater search (Roberts et al., 2018), and response time in
ocking

formations of UAVs (Hauert et al., 2011). To begin creating metrics for autonomy

speci�cally, one can research what is needed for an autonomous system to be both

e�ective and safe and leverage these requirements to develop test metrics.

Literature addresses requirements of autonomous systems. In Woolley and Pe-

terson (2009), autonomous systems that implement reactive architectures prescribe

to requirements of reactive planning. These requirements state that an autonomous

system shall be: responsive, robust, and modular (Woolley and Peterson, 2009).

1. Responsive: a responsive autonomous system allows timely planning and reac-

tion to its environment, allowing safe operation in a dynamic environment

2. Robust: a robust autonomous system allows performance in unanticipated cir-

cumstances and sensor failures

3. Modular: a modular autonomous system allows incremental development

These requirements allow reactive architecture systems to function safely and e�ec-

tively in unpredictable environments (Woolley and Peterson, 2009).

40

Brooks (1986) identi�es 4 requirements for an intelligent autonomous mobile

robot:

1. The system shall achieve multiple goals

2. The system shall have multiple sensors

3. The system shall be robust

4. The system shall be extensible

The requirement to have multiple sensors is derived from the �rst. According

to Brooks, multiple goals are necessary for useful implementation of an autonomous

system. Multiple goals are achieved by perceiving an environment with multiple

sensors. The requirement of using \multiple sensors" to achieve \multiple goals" has

two consequences: a requirement to be responsive and the reality of making decisions

under uncertainty. According to Brooks, the control system \must be responsive

to high priority goals, while still servicing necessary `low level' goals" in order to

achieve multiple goals e�ciently. These goals are achieved by an agent perceiving

its environment with multiple sensors and making appropriate decisions. However,

each sensor provides information with an associated error. Since the agent uses this

information to make decisions, autonomous systems make decisions in conditions with

error (Brooks, 1986). This reality brings into question the quality of decisions made

under error and the impact of error in the performance of required tasks.

The third requirement, robustness, addresses the systems ability to adapt. An

agent will experience sensor failures. In response, the system should adapt its logic

to only use sensors currently reliable to achieve remaining functionality.

The last requirement listed is extensible. As more capabilities are added to the

autonomous system, more processing power will be needed. If the agent is not ex-

41

tensible, adding more capabilities will impair the robots processing speed, hurting

operational functions due to slow processing time (Brooks, 1986).

These requirements can be implemented in autonomous systems using reactive

or active architectures and utilized to create test objectives to enter into the test

planning steps. The methods of test planning, design of experiments, and statistical

models can be used once metrics are identi�ed to measure the extent to which these

requirements are met.

2.9 Summary

In literature review, information on the wide area search scenario, cooperative

autonomous control, autonomy architectures and the uni�ed behavior framework are

given. Previous work on the autonomous system reference architecture expanded in

this research is presented and the knowledge needed to understand the test methods,

models, optimization and origin of autonomy metrics are detailed. This information

will be implemented in the research implementation and analysis.

42

III. Methodology

3.1 Overview

Chapter III provides a discussion of the selected scenario and test methods per-

formed in this research. Details of the selected wide area search scenario are given

along with the four levels of cooperation to be tested. Next, the chosen approach

to implement this WAS scenario in ASRA is discussed. For test methods, the steps

used to plan the test, including metrics are presented. The details of factor selection,

automated testing and optimization are presented.

3.2 WAS Scenario Design

A wide area search and con�rm mission was selected as the application for this

research. This di�ers slightly from some of the existing WAS research as no muni-

tions are involved and the targets are not attacked, simply revisited to confrim their

classi�cation. The main objective was to both �nd all targets in search mode to get

an initial classi�cation, and re�ne that classi�cation with a con�rmation at a lower

altitude. The con�rming could be either the original searching agent in a single agent

case or another agent in the case of a cooperating case. This provides a mission with

competing goals: to e�ciently �nd as many targets as possible in a given search area,

and to accurately classify them.

All agents had the same sensor model which utilized a binary confusion matrix

and a circular �eld of view. The binary confusion matrix was degraded based on a

chosen best case Ground Sample Distance (GSD) or minimum altitude, and only the

�rst reading of a target was recorded. This resulted in an altitude where
ying higher

increased the area coverage rate but degraded the sensor image quality. Flying lower

than the minimum altitude did not improve the sensor any further than the best case

43

performance. The minimum altitude was selected as the agents' con�rm altitude, so

the higher search altitude diminished the sensor quality by some factor.

The agents searched in a \lawnmower" pattern with spacing determined by the

sensor �eld of view and search altitude to give maximum coverage of the search area

in the minimum number of passes. This put classi�cation accuracy and area cover-

age rate at odds as both could not be maximized for the same mission parameters.

Additionally, each agent had a fuel usage model based on its velocity. This limited

endurance and would trigger a return to launch (RTL) condition to ensure that the

vehicle returned home with a 20 percent fuel reserve. The fuel consumption rate was

designed to simulate mid-sized consumer multi-rotors and, together with the search

area size, limited system performance in some cases.

Real and false targets were implemented to test the sensor's false alarm and false

positive error. These targets were uniformly distributed across a given search area

and kept static throughout the simulation. When a target came into view, a number

was pulled randomly from a uniform distribution and compared to the confusion

matrix to make a determination on how the target was sensed. If the number was

lower than the appropriate confusion matrix diagonal value, the target was sensed

correctly, otherwise it was an incorrect classi�cation and a Type I or Type II error

was assigned to that target instead of a correct classi�cation. Targets were sensed

only once per pass so targets were ignored in sequential frames.

The scenario was run at four levels of cooperation to study their e�ects on system

performance. First, the single agent case was run as a baseline to test the basic

autonomy and ASRA performance. In this case, a single agent searched the entire

area and then transitioned to con�rm any targets it detected as real. Second, a basic

cooperation case was implemented where two agents split the search area initially,

then searched and con�rmed their half without communicating with the other agent.

44

Third, the extreme cooperation case consisted of two agents splitting the search area

and sharing their target information. As soon as an agent found a target, the other

agent would immediately break from search, con�rm the target, and return to their

search pattern. Finally, the moderate cooperation case implemented a utility function

to determine when an agent should break from search to con�rm any target.

An additional case was run on the �nal, moderate cooperation case that speci�-

cally tested the WAS system's ability to compensate for an agent falling o�ine. To

test this, one agent was initialized with a low fuel capacity, causing it to RTL early

in the mission. The remaining agent would then continue searching the total area,

taking over the area left by the other agent. The RTL agent could then return to the

mission but could only con�rm already found targets.

Tested Cooperation Levels:

1. Single Agent Case - one agent searches and con�rms entire area.

2. Basic Cooperation Case - Two agents split search area and individually search

their half.

3. Extreme Cooperation Case - Two agents split search area, search, and immedi-

ately con�rm any target other agent �nds.

4. Moderate Cooperation Case - Two agents split search area, search, and use a

utility function to determine value of con�rming any target or continuing search.

These scenarios were designed to tax the system in multiple ways, providing a

means to analyze how an advanced implementation of autonomy with cooperative

agent interactions can alter mission e�ectiveness. Many elements could have been

added to the scenario such as target priorities, persistent surveillance, more agents,

moving targets, or a more advanced simulation environment but were not imple-

mented due to time constraints.

45

3.3 Software Design

This research implemented ASRA with a three layer architecture for the single

agent case initially, and was expanded to the four layer HAMR architecture to pro-

vide the additional coordinator layer needed for the cooperation cases. To achieve

this, the existing state of ASRA had to be extended which consisted of additions to

the sequencer and the inter-module messaging structure as well as completely new

deliberator, coordinator, and perceptor modules. LCM provided the communication

interface between modules because it provides low-latency data transfer between dis-

crete software parts along with logging and live inspection tools. All LCM messages

had a single sender to prohibit information loss caused by two senders sending unique

information at the same time. This increases the required number of LCM mes-

sages but allows layers to send data at anytime without requiring synchronization, a

requirement when running software modules concurrently.

The coordinator relayed appropriate information between agents and provided the

deliberator with additional information on other agents and utility values on cooper-

ation related tasks. The deliberator layer was implemented as a state machine with

transitions driven by completed behaviors or new goals such as stopping search to

con�rm a target. The sequencer layer was implemented as a static sequencer that se-

lected behaviors by matching objective plan (OP) goals to the goals of the controller's

predetermined behavior hierarchy. This is a simpli�ed sequencer compared to the Dy-

namic Behavior Hierarchy Generation sequencer presented in Peterson et al. (2011)

which builds up the behavior hierarchy dynamically at run time. The controller was

an instantiation of the UBF that did not require the use of complex behaviors, but

a test of complex behaviors was performed to analyze the process of building up

complex behaviors. Behavior sensor inputs were not provided by the sequencer but

46

instead were provided by the originator of the sensor data such as the simulator for

position data or the deliberator for waypoint position data.

The perceptor and simulator made up the remaining two modules. The percep-

tor contained the target sensor and communicated over LCM to send sensed target

information and receive commands from the deliberator. A particle mass simulator

and the Ardupilot Software in the Loop (SITL) simulator were two viable simulators.

SITL's higher �delity model but longer run time had to be weighed against the faster

particle simulator. Identical scenarios were run in both simulators to determine the

appropriate simulator to use for all experiment runs.

3.4 Test De�nition

Test de�nition is an important part of test planning. Test de�nition includes

problem statements, system decomposition, and test objectives. Test objectives map

to problem statements and elements of the system breakdown. The test plan is given

in Appendix Q.

Creation of the problem statement/questions provide what the test needs to ad-

dress or answer and drives the following steps in the test plan.The problem statement

includes the scope of study and indicates the type of problem to be investigated.

Problem Statements/Questions:

1. What con�guration of design parameters will maximize area searched and per-

centage of real targets found for a multi-rotor vehicle(s) in a WAS mission?

2. What con�guration of design parameters yield robustness, perception accuracy,

and responsiveness for a multi-rotor vehicle(s) in a WAS mission?

Problem Type: Optimization of multiple response variables/objectives

Scope: Rotary vehicle in a WAS mission

47

System Decomposition: A breakdown of the system being studied allows the

problem statements to be applied across the entire system (Figure 11).

Figure 11. Component breakdown of the system

Test objectives indicate individual questions that the test should answer. Test

objectives often drive response variables that will be measured in the test. The

test objectives are written in question form. Test objectives are created by broadly

applying the problem statements to the system breakdown given in Figure 11. Table

5 maps test objectives to system components and problem statement number.

Test Objectives:

1. What percent of targets are detected correctly?

2. What percent of targets are detected in an assigned search area?

3. What percent type I error occurs on targets out of those detected?

4. What percent type II error occurs on targets out of those detected?

5. What percent of targets are con�rmed correctly out of all con�rmations?

48

6. What percent of targets are con�rmed in an assigned search area?

7. What percent type I error occurs on con�rmations out of those con�rmed?

8. What percent type II error occurs on con�rmations out of those con�rmed?

9. What percent of the assigned search area is actually searched?

10. How much time would it take to complete the mission in real time?

11. How robust is the autonomous system to sensor failure?

12. How responsive is the autonomous system to reactive planning?

13. How accurate is the perception of the autonomous system?

Table 5. Test objectives map to system components and problem statements

Objectives WBS Element Problem Statement Number
Percent Correct Detected Sensor 1

Percent Detected Sensor 1
Type I Error Detect Sensor 1
Type II Error Detect Sensor 1

Percent Correct Con�rmed Sensor 1
Percent Con�rmed Sensor 1

Type I Error Con�rm Sensor 1
Type II Error Con�rm Sensor 1
Percent Area Covered Air Vehicle 1

Mission Time Air Vehicle 1
Robustness Autonomy 2

Responsiveness Autonomy 2
Perception Accuracy Autonomy 2

Table 5 shows test objectives that trace to problem statements that re
ect the

task and function of the system and its ability to make decisions.

49

3.5 Iterative Development

Methods of development and test included iterative delivery in sprints with col-

laboration between software development and testing. Each iteration included a test

and software deliverable, demonstrating modularity and extensibility of both test and

design. The required data for each test was given to the software developer in the

test planning phase to allow timely testing. Collaboration between the tester and

software resulted in test informed design, meaning test informed design and design

informed test. Figure 12 shows the collaboration in parallel. Parallel development

allowed feedback between test and development for design decisions. The sprints used

in the iterative development are given below:

Sprints:

1. Deliver single vehicle with ingress, search, con�rm, and land behaviors. Test

included all mission and vehicle related response variables and the

responsiveness autonomy metric using automated testing.

2. Deliver two vehicles with ingress, search, con�rm, and land behaviors with low

and high cooperation levels. Test included all mission and vehicle related

response variables, responsiveness, and perception accuracy using automated

testing.

3. Deliver two vehicles with ingress, search, con�rm, and land behaviors with

moderate corporation levels. Test included all mission and vehicle related

response variables, responsiveness, perception accuracy, and robustness using

automated testing.

50

Figure 12. Graphical depiction collaboration between test and software developer

3.6 Automated Testing

The purpose of automated testing is to e�ciently execute all selected factors and

levels, and collect and organize all response data for analysis. The code created

51

followed the process shown in Figure 13. The output of the script is a spreadsheet of

response variables for each factorial condition. The spreadsheet can be loaded into

JMP for statistical analysis through the GUI. A guide outlining the functions of JMP

in this project is outline in Appendix P. The process shown in Figure 13 is executed

for each sprint.

Figure 13. Graphical depiction of automated testing code

The automated testing code was run in a Python script which called each Python

class shown in Figure 13. The Python script was run in a Linux terminal. The

52

GenerateDoE function created the experimental design using the factors and levels

from inputs. The GenerateDoE function is from pyDOE, a Python library (Baudin

et al., 2009). The resulting design is given in Table 30 and Table 31 in Appendix H.

The experimental design is saved and each row is referenced to set up the con-

ditions for the simulation WASAgent. The required data for testing is found within

the LCM messages passed within and/or between agent(s). The LCM messages are

logged throughlcm-logger. LogReaderallows the lcmlog to be read and analyzed by

Python in Analysis. Each run saves the outputs to a spreadsheet that is appended

with each run to save the data in case of an error. The spreadsheet is saved as a CSV

�le.

Once the project progressed past sprint 1, the size of �les created bylcm-logger

grew to �le sizes in the range of 200 MBs for each simulation. Additionally, 4.5

days are required to test sprint 2 entirely (320 simulations, 160 for each level of

cooperation). Adjusting messages and simulation step size could potentially allow

alleviation of this challenge. The simulation step size drives the precision of the

simulation, measured in seconds. To alleviate �le size,lcm-logger only subscribed

to messages needed for analysis of that sprint. This resulted in faster running code

and smaller �le sizes. Additionally, the step size of the simulation can be adjusted

in exchange for speed and smaller �le sizes. As a result, tests were conducted to

determine a step size that would allow faster computation without losing acceptable

precision. Given the same inputs and seed number for random uniform distribution

of targets, it was found that a step size of 0.3 seconds was preferable. Results are

shown in Table 6. With a step size of 0.3 seconds and subscribing to only required

messages, the �le size for sprints 2 and 3 was brought down from 200 MB to less than

20 MB. Percent di�erence in Table 6 is calculated in reference to a 0.05 second step

size. A negative percent di�erence indicates a decrease from the 0.05 reference. A

53

positive percent di�erence indicates an increase from the 0.05 reference point. In the

step size test, only required messages were subscribed. In light of these �ndings, a

step size of 0.3 is implemented in sprints two and three.

Table 6. Step size test results

Measure 0.05 Seconds 0.1 Seconds 0.3 Seconds

Percent Area Covered 62.21%
62.8%

+�0 :11%

62.83%

+�0 :99%

Mission Minutes 5.62 mins
5.67 mins

+�0 :88%

5.75 mins

+�2 :31%

File Size (MB) 13.5 MB
6.8 MB

� �49 :62%

2.3 MB

� �82 :96%

3.7 Metrics & Required Data

Using the requirements for autonomous systems listed by (Brooks, 1986) and a

reactive control system as prescribed by Peterson's Uni�ed Behavior Framework, the

following metrics of autonomy were selected:

Responsiveness: The amount of time the agent requires to respond to external

stimuli. This is measured as the amount of time required to actuate on an objective

plan (OP). The maximum responsiveness of each run is saved and the distribution

of worse case responsiveness is evaluated over all runs.

Responsiveness =max [tOP actuation � tOP created]

Robustness: The degree to which the system can continue the mission using

operable vehicles after a vehicle is forced o�ine due to a failed sensor. Robustness is

calculated as a percent di�erence in responseYi for each runn, Yin .

54

Robustness (Yin) = 100
�

Yin; error � Yin; no error

Yin; no error

�
%

Perception Accuracy: The impact of false perception on actions selected by the

agent. This is measured by a ratio of correct plans selected by the agent against all

possible plans.

Perception Accuracy =
OPcorrect

OPT otal

In order to account for all possible combinations and, the above was calculated by

the following:

Perception Accuracy = 1�
TypeIError

OPT otal � OPN Conf irm + NConf irm + TypeIError + TypeIIError

Note that a new OP was not created and passed for each target con�rmed, rather

only when there was a decision to enter and exit the con�rm behavior.

In addition to metrics for autonomy, the following were used to evaluate the

system's mission performance:

Percent Area Searched: The percent square area evaluated by the agent for

targets out of total assigned area.

Percent Area Searched = 100
�

Asearched m2

Aassigned m2

�
%

55

Mission Time: The amount of time taken by the agent(s) to �nish the mission.

This is the projected actual time to accomplish the mission which is proportional to

the number of simulation iterations:

Mission Minutes =
Nsim iterations Nsim step size

60

Percent Detected : Percent of targets detected by the agent, either as true or

false. This metric captures what percent of the targets had the chance of being true

or false by the sensor.

Percent Detected = 100
�

Ndetected targets

N false targets + N true targets

�
%

Percent Correct Detected : Percent of the true targets detected by the agent.

Percent Correct Detected = 100
�

Ncorrect detection

Ndetected

�
%

Type I Error Detected: The percent of real targets detected that were in truth

false.

Type I Error Detected = 100
�

NT ypeI Error

Ndetected

�
%

Type II Error Detected: The percent of false targets detected that were in truth

true targets.

Type II Error Detected = 100
�

NT ypeII Error

Ndetected

�
%

Percent Con�rmed: The percent of all targets that were con�rmed correctly.

Percent Con�rmed = 100
�

Ncorrect conf irmations

N false targets + N true targets

�
%

56

Percent Correct Con�rmations: The percent of con�rmations that were

con�rmed correctly out of possible con�rmations.

Percent Correct Con�rmations = 100
�

Ncorrect conf irmations

Nconf irmations

�
%

Type I Error Con�rm: The percent of real targets con�rmed that were in truth

false.

Type I Error Con�rm = 100
�

NT ypeI Error Conf irm

Nconf irmed

�
%

Type II Error Con�rmed: The percent of false targets con�rmed that were in

truth true targets.

Percent Type II Error Con�rmed = 100
�

NT ypeII Error Conf irm

Nconf irmed

�
%

3.8 Factor and Level Selection

In theory, there are near in�nite factors and levels that could be chosen for testing.

However, applying a full factorial design to a large number of factors and levels

makes testing unachievable. To start o�, the factors in Table 7 were drafted using

expert input on the WAS problem, Jacques (2019). Detect real refers to the sensor's

probability of true target recognition (PTR) and detect false refers to the sensor's

probability of false target recognition (PFTR). Using the factors as given, a DoE

would require N = 2 8 = 256 runs without any replicates to estimate experimental

error or center points to detect curvature.

.

The factors and levels in Table 7 were tested in a screening design to determine a

rough estimate of factor signi�cance. A Plackett-Burman design was implemented on

57

Table 7. Factors and Levels Pre-screening

Factor High Low
Full FOV 39� 14 �

Search Velocity 15 m/s 5 m/s
Detect Real 0.9 0.65
Detect False 0.9 0.65
Search Area 490,000m2 202,500m2

N Real Targets 19 1
N False Targets 19 1
Search Altitude 150 m 300 m

sprint 1, a nonregualr design used for screening up to 11 factors with two levels using

only 12 runs. The results showed search velocity dominating over sensor con�guration

con�guration. It was concluded that
ying at 15 m/s was taxing fuel too much for

the given search area, as indicated by the small percentage of assigned area covered

by the single agent. The factors and levels were adjusted as given in Table 8 as a

result of these �ndings.

Table 8. Re�ned Factors and Levels

Factor High Low
Full FOV 39� 14 �

Search Velocity 10 m/s 5 m/s
Detect Real 0.9 0.65
Detect False 0.9 0.65
Search Area 490,000m2 292,500m2

N Real Targets 19 1
N False Targets 19 1
Search Altitude 150 m 300 m

The changes made in Table 8 allowed resources to be challenged against each

other. No factor level was optimal in all situations, allowing trade space evaluation.

However, there is a desire to estimate experimental error and detect curvature. As a

result, the test space was limited to decrease the number of runs required to meet these

interests. In order to limit the test space, the �eld of view (FOV) and search altitude

58

were held constant. The full FOV diameter on the ground can be calculated using

Equation 20. All possible combinations of FOV diameter on the ground are given in

Table 9. The �rst combination is selected to hold constant across experiments.

Ground FOV Diameter = 2 � altitude � tan(
FOV �

2
) (20)

Table 9. FOV and altitude combinations

FOV Altitude Ground Diameter
39� 150 m 26.56 m
39� 300 m 53.18
14� 150 m 9.21
14� 300 m 18.42

The �nal factors and levels used in all further experiments are shown in Table 10.

Table 10. Final Factors and Levels

Factor High Low
FOV 39�

Search Velocity 10 m/s 5 m/s
Detect Real 0.9 0.65
Detect False 0.9 0.65
Search Area 490,000m2 292,500m2

N Real Targets 19 1
N False Targets 19 1
Search Altitude 150 m

Using the factors as given in Table 10, a DoE would requireN = 26 = 64 runs

without any replicates to estimate experimental error or center points to detect cur-

vature. The run size is now small enough to allow replicates reasonably. Running this

design showed lack of �t and signi�cant interaction and second order e�ects, indicat-

ing a need to detect curvature. A �nal design choice of a face center central composite

design (FCCD) was chosen. This design was chosen because it is a classic design for

response surface methodology of second order. The design includes a factorial, center

59

points, and interactions between the center points and main e�ects to detect second

order model while limiting run size. Implementing this design requires 80 runs. As a

result, this model was implemented with two replicates, giving a total of 160 runs per

level of cooperation or for a single vehicle. All sprints can be simulated in approxi-

mately 84 hours, with a maximum of 48 hours for sprint 2. The �nal experimental

design is given in Table 30 and Table 31 in Appendix H.

The experimental design method for the framework is shown in Figure 14. The

design takes an instantiation of the framework, WAS for a rotary vehicle, and imple-

ments the experimental design though the simulation. Data is collected for analysis

of each iteration. Figure 14 shows the design in only three dimensions for readability.

Since there are six factors, the test space is in six dimensions. The results of the sim-

ulation will be used to make conclusions about the instance of the framework in order

to give optimal con�gurations for real
ight using statistical methods and models.

3.9 Optimization of multiple responses

Response surfaces are created for each response variable in all sprints. Response

surfaces are statistical models to predict a single response for a given set of inputs.

Multiple responses can be optimized using desirability functions. Each response has

a mark desirability for each response value. A more desirable response will have a

higher desirability score. The range of desirability is from 0 to 1. The desirability of

each response is weighted to re
ect relative importance of one response over others.

All weights must sum to one. The weights and individual desirabilities (di) are used

to calculate multiple response Desirability (D i). The optimal response is one with the

maximum Desirability (D i). The maximum Desirability con�guration can be input

into the response surfaces to predict performance at the optimal point given weights

(wi) and desirability (di) values. This is done with python classes and scripts. The

60

Figure 14. Graphical depiction of experimental design to test an instance of the frame-
work

61

values of weights (wi) and individual desirability (di) values can be changed with a

con�guration class.

A range of values are input into the response surface to measure Desirability. In

this research, the range of values tested in experimental design are used to test all

combinations. Since operational environment cannot be chosen, values of search area

and number of true and false targets are de�ned as target sparse, moderate density,

and target rich environments. Given a search area and number of true and false

targets expected, the all other inputs are varied to maximize Desirability. Optimal

mission parameters are selected from those that give maximum Desirability for each

environment. The process for each case is shown in Figure 15. The python code

created for optimization is given in Appendix O.

3.10 Summary

This chapter provided the methodology used to implement and test the WAS

scenario. The search and con�rm scenario to be implemented in ASRA consisted

of one to two agents searching in \lawnmower" patterns to detect targets and then

con�rm targets at four levels of cooperation. Overall software implementation details

were then given, specifying the four layer HAMR architecture and LCM messaging

interface between layers. Test de�nition outlined the test plan implemented in this

research. The iterative development strategy was presented as well as the method

used to generate simulation testing using automated testing. Design and test choices

such as step size selection and narrowing down of the chosen factors and levels were

presented. The required data to capture the response variables were given and meth-

ods for optimization of vehicle con�guration were presented. The methods shown in

this chapter were implemented to generate the results discussed in the next chapter.

62

Figure 15. Graphical depiction of optimization method

63

IV. Analysis and Results

4.1 Overview

Chapter IV details this ASRA implementation as well as the DoE results from the

experimentation runs. First, an overview of the autonomous system's architecture

is given, bridging MBSE and autonomous system design methods. Next, a detailed

walk through of the system's software implementation is given, starting at the con-

troller and working up to the coordinator. The resulting mission performance at each

cooperation level is presented as well as a comparison of simulators currently o�ered

in ASRA. Finally, the results of the design of experiments are given for all sprints.

An optimization of responses is applied to two vehicle operation to con�gure a vehicle

for
ight using statistical models created from design of experiments results.

4.2 ASRA Architecture Design

MBSE tools and techniques were used to design the system from both a tradi-

tional systems engineering view and the autonomy view. Both domains have unique

taxonomy and system vocabulary, so a link between the two had to be made. A

glossary of these terms is provided in Appendix R. Model Based Systems Engineering

decomposes a system from the mission level, to tasks, and then functions. Figure

16 shows the functional decomposition for the WAS agent system. This functional

decomposition is usually compared to the system's physical decomposition to allocate

functions to components. This ensures a complete allocation of all functions and all

components. Because the focus of the research is less on the physical instantiation of

the agent and more on the software and autonomy, a physical decomposition was not

created for this thesis. Instead, these system functions were traced to the autonomy

functions discussed below.

64

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	General Issue
	Scope
	Research Objectives and Questions
	Assumptions and Limitations
	Preview

	Literature Review
	Overview
	Wide Area Search Scenario
	Cooperative Autonomous Control
	Autonomy Architecture
	Statistical Models: Linear Regression
	Test Planning
	Design of Experiments
	Randomization

	Testing Autonomy
	Summary

	Methodology
	Overview
	WAS Scenario Design
	Software Design
	Test Definition
	Iterative Development
	Automated Testing
	Metrics & Required Data
	Factor and Level Selection
	Optimization of multiple responses
	Summary

	Analysis and Results
	Overview
	ASRA Architecture Design
	ASRA Software Implementation
	Simulator Comparison
	WAS Simulation Performance
	Design of Experiments Results
	Responsiveness
	One Vehicle Operation
	Two Vehicle Operation and Cooperation Levels
	Robustness
	Application of DoE and RSM Results

	Test Method for Autonomous Systems
	Summary

	Conclusion
	Overview
	Research Findings
	Lessons Learned
	Future Work
	Final Thoughts

	LCM Message Descriptions
	Sample Behavior Code
	Controller Main Function Code
	Sequencer Main Functions Code
	Deliberator Main Function Code
	Perceptor Sense Function Code
	Coordinator Main Function Code
	Face Centered Central Composite Design Matrix
	Multiple Comparison Test Results: One Vehicle Operation
	Multiple Comparison Test Results: Two Vehicle Operation
	Response Surface JMP Outputs: One Vehicle Operation
	Response Surface JMP Outputs: Two Vehicle Operation
	Responsiveness: One Vehicle Operation
	Responsiveness: Two Vehicle Operation
	Response Surface Optimization Code
	JMP Use Guide
	Test Plan
	Multi-Domain Glossary
	Bibliography

